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Using the solution of a boundary-value problem of nonstationary heat conduction, we suggest an approach 

to determining the temperature in laser irradiation of the surface of a two-period laminar semiinfinite body. 

Introduction. Heating of materials by local heat sources has come into widespread use in practice. Most 

common are processes in which the model of the object of heating is in the form of a semiinfinite body. 
Nonstationary temperature fields that appear as a result of the thermal action of a laser beam on the surface of a 

homogeneous half-space were studied in numerous works, reviews of which are presented in [1-3 ]. We investigate 

the influence of the relationship between the thermophysical parameters (the coefficients of thermal conductivity 

and thermal diffusivity) of the materials of a two-period semiinfinite laminar composite on the transient temperature 

processes occurring in it due to the heating of a free surface by a laser heat flux with a uniform or normal (Gaussian) 

distribution of intensity. 

1. Statement of the Problem. We will consider a semiinfinite body consisting of a periodic system of two 

connected heterogeneous layers of thickness l I and/2.  The initial temperature of the composite is assumed to be 

zero. At the instant of time t --- 0 we begin to heat the body surface by a laser heat flux distributed uniformly or 

normally in a circle of radius a. Outside this region, the surface of the half-space is thermally insulated, and the 
layers are in ideal thermal contact with each other. 

In this statement the temperature field that appears in the composite is axisymmetric. Therefore we refer 

the body to a cylindrical coordinate system (r, z) with the origin at the center of the heating circle and the z axis 
directed into the composite. 

In application to boundary-value problems of heat conduction and thermoelasticity, a procedure for 

homogenization of the laminar two-period composite considered is suggested in [4, 5 ]. The temperature T of the 
inhomogeneous body is represented in the form 

T ( r , z , t )  = 0 ( r , z , t )  + h ( z )  e ( r , z , t ) ,  (1) 

where h is the well-known/-periodic function of the type 

z - l 1 / 2  , 0 < z _< l 1 , 
h(z )  = - ~ l z / (  1 - ~ 1 ) - l l / 2 +  l l / (  1 - r / ) ,  l 1 _z_<  l (2) 

(l = I l + 12, r/= l l / / ) ,  which satisfies the condition 

z+l/2 

f 
z-l~2 

h(z')dz'=O, Ih(z)  l < t ,  0 _ < z < ~  (3) 

In representation (1) 0(.) is an unknown function (the macrotemperature), while e(.) can be determined 

by using microlocal thermal parameters associated with the periodicity of the composite-material structure [4 ]. 
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Since for the microperiodic composite I h(z)  I _< l, then for 0 < z < 0% on the basis of relations (2) and (3) at small 
l, we neglect the second term in the right-hand side of Eq. (I) [4 ], while in order to find the macrotemperature 0 
one is to solve the boundary-value problem of heat conduction 

+ O + K  o - - - ,  p , Z > 0 ,  ~o<oo, (4) 
o z  2 o~o 

0 = 0  at p , Z > _ O ,  F ' o = 0 ,  (5) 

,90 _ A G  i(t9) ( i =  1,2)  p > 0  Z = 0  Fo > 0  (6) 
0Z . . . .  

where 

0- ,0  at p 2 + Z  z--,~o, Fo > 0 ,  (7) 

A = qo a / K ,  Fo = "kt/a 2 , (8) 

K O = K / K ,  K = K -  [ K ] / K ,  (9) 

(K*) 

~'= k~ ~ (k'), (10) 

K* = K I / K  2 , 

The influence functions in relations (10) have the form 

a (x) = ~ (x) - [,~ (x) 12 /~  ( x ) ,  

~(x )  ~1 + ,/2(1 T/)-I -1 

We will consider heat fluxes with a uniform 

or normal (Gaussian) 

k* = k l / k  2 .  (11) 

[5 (X)] = ?7 (I  -- x - - l ) ,  

(X) = '1 + (1 -- r  

a ~ 6 0 ) = g ( t - p ) ,  p > 0  

G 2 (p) = exp ( -  p2) ,  P > 0 

(12) 

(13) 

(14) 

spatial distribution of the heat-flux intensity. 
2. Determination of the Temperature Field. Having applied to differential equation (4) the Hankel integral 

transformation with respect to the radial variable p, we obtain 
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where 

02 ~ ~2/Co~ 0 (15) 
OZ 2 = , 

-o (~, z ,  ~o) = ~ po ~,  z ,  ~o) So (~p) Jp . 
o 

The transformed boundary conditions (5)-(7) take the form 

o(L z ,o )=  o, z>_o, (16) 

- - = - A ~ o  i(~) ( i=  1,2) Z = 0  (17) 0Z ' ' 

Here 

( ~ , o % F o ) = 0 ,  F o > 0 .  (18) 

s~ (~) = f P  Gi 6~ Jo (~P) dp (i = 1, 2).  (19) 
o 

For the functions Gi(p) of the form given in (13) and (14) the integrals of (19) are calculated analytically 
[61. We obtain 

~O1 (~) = Jl (~)/~ , ~O2 (~) = 0.5 exp (-- ~2/4) .  (20) 

In turn, we apply the Laplace integral transformation with respect to the variable t to Eq. (15) and 
conditions (16)-(18): 

(L z ,  s) = ~ exp ( -  st) -o (L z,  t) dr. 
0 

As a result, we come to the second-order ordinary differential equation 

2 
dzO f 1 2 ~ = 0 ,  f l 2 = $ 2 +  a___ss, 

dz 2 

whose solution must satisfy the boundary conditions 

d~ h 
d Z = - s ~ P i ( ~ )  at Z = 0  

(21) 

(i = 1, 2 ) ,  (22) 

(~, o% s) = 0 .  

The solution of Eq. (21) subject to conditions (22) and (23) has the form 

A 
(~ ,Z , s )  =~flfl~o i ( ~ ) e x p ( - f l Z )  ( i =  1 ,2) .  

(23) 

(24) 
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Since the inverse Laplace transform of the function ( l / s ~ )  exp (-/3z) is equal to [71 

- exp ( -  Z0~ ) erfc ~ - 

- exp ( -  z0 ) , z 0  -- z ,  (25  

then,  af ter  applying the inverse Laplace and  Hankel  t ransformat ions  successively to relat ion (24), for the  

macrotemperature 0 we obtain 

0 ( p , Z ,  F o ) = A T ~ i ( ~ ) O ( ~ , Z o ,  Fo) J0 (~P)d~  ( i =  1 , 2 ) ,  ; , Z ,  F o <  ~ .  (26) 
0 

Let us take note of certain important particular cases of the solution (26). If the materials of the conjugate 

layers are identical, then from Eqs. (9)-(12) we obtain that Ko ~ 1, K* ~ I, k* = 1, r /=  0.5, if(-) -- ~ ( . )  -- 1, In( . )  ] 

= 0, and relation (26) coincides with the well-known solution for a homogeneous half-space [ 1, 8 ]. 

In a s teady state, when t --, ~ ,  the function �9 of (25) is equal to 

~b (~, Z0, co) = exp ( -  ZO~)/~K 0 , 

and from Eq. (26) we find the temperature distribution in the s teady state: 

A ~ ~ (~) exp ( -  z0~ ) Jo (~P) a~ (i = 1, 2). (27) o~o,z) = ~ o  

The maximum temperature 0max(P, Z) is attained at the center of the heating spot. When p -- 0 and  Z = 

0, from relation (27) it follows that 

A ~o, (~) s o (~p) d~ (i = 1, 2), (28) 0max -- K0 0 

or, with account for the form of the functions ~oi(~) of (20), that 

A 
Oma x - KO (i = I , uniform hea t ing) ,  (29) 

0ma x = ~ (i = 2 ,  normal dis tr ibut ion) .  (30) 

For identical materials of the layers at Ko = 1, expressions (29) and (30) coincide with those for a 

homogeneous half-space [3, 91. 

3. Numerical Analysis. The dimensionless spatial variables p, Z, the Fourier number Fo -- k t t / a  2, and the 

parameters r/, K*, and k* are the input parameters of the problem. Calculations are carried out for the dimensionless 

temperature 7"* --- T / A I ,  where At -- Aa (K*); the results are shown in Figs. 1-5. The solid curves refer to the case 

of a constant intensity of the heat flux in the form of Eq. (13), and the dashed curves refer to a normal distribution 

in the form of Eq. (14). Each of the figures presented here consists of parts a and b. Parts a in Figs. 1-4 show the 

change in 7"* with a certain parameter for several values of K* at k* = 1, and parts b, for different values of k* at 

K * = I .  
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circle with the magnitude of the Fourier  number  Fo at r /=  0.5. 
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Fig. 2. Change in the dimensionless temperature  T* with the radial coordinate  

p at Z - -  0; Fo ---10; 7/ - 0 . 5 .  
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Fig. 3. Change in the dimensionless temperature  7"* with the axial coordinate  

Z a t p  - 0; Fo = 10; r /=  0.5.  

The  durat ion of t ransient  temperature  processes at the center  of the heat ing region (p -- 0, Z -- 0) is 

illustrated by the numerical data in Fig. 1. It is seen that the value Fo -- 10 corresponds almost completely to the 

time when the tempera ture  attains a s teady state. The  temperature  at the center  of the heat ing spot for a constant  

heat flux is always higher  than in the case of a normal distribution of it. 

The  distr ibution of the temperature  T* along the radius on the boundary  surface and along the axis p -- 0 

is given in Figs. 2 and 3, respectively. When the heat flux is constant,  the tempera ture  field has a substantial  

gradient near  the boundary  of the heating circle (p -- 1). The  values p -- 5 and Z = 2.5 determine the limiting 

dimensions of the region with a high temperature  level. 

The  influence of the relative thickness of each of the components  of the composite (base) layer  is shown 

in Fig. 4. At a prescribed relative thermal  diffusivity an increase in the thickness of the component  with the grea ter  

(smaller) thermal  conductivity causes a decrease (increase) in the surface tempera ture  (Fig. 4a). If K* is f ixed, 
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Fig. 4. Dependence of the dimensionless temperature 7"* at the center of the 

heating circle on the relative thickness of the base layer r /a t  Fo = 10. 
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Fig. 5. Dependence of the dimensionless temperature 7'* at the center of the 

heating circle on the relative thermal conductivity K* (a) and the relative 

thermal diffusivity k* at Fo --- 10 (b). 

then an increase in the parameter r/causes an increase in the temperature of the composite surface for k* > 1 and 

a decrease for k* < 1. 

An increase in the relative thermal conductivity K* at a fixed k* leads to a rise in the temperature (Fig. 

5a). If K* is fixed, an increase in the relative thermal diffusivity k* entails a decrease in it (Fig. 5b). 

Conclusions. An expression is obtained for the nonstationary temperature at an arbitrary point of a two- 

period laminar semiinfinite composite when its surface is heated locally by a concentrated heat flux with a uniform 

or normal distribution of intensity. It is established that: 

a) for a the prescribed radius of the heating spot the temperature of the composite surface is always higher 

for a constant distribution of the heat flux; 

b) the temperature fields have considerable gradients the radial and axial directions; 

c) an increase in the relative thermal conductivity (K*) or thermal diffusivity (k*) exerts a different 

influence on the temperature of the composite medium, namely, the latter increases with K* and, conversely, 

decreases with an increase in k*. 

N O T A T I O N  

1(4, ki (i = 1, 2), coefficients of thermal conductivity and thermal diffusivity of the conjugate layers of the 

composite, respectively; li, thickness of the layers; l, thickness of the base layer; 0, macrotemperature; e, microlocal 

parameter; T, temperature; r, z, spatial coordinates; a, radius of the heating spot; p = r / a ;  Z = z / a ;  t, time; q0, 

heat-flux intensity at the center of the heating region; erfc(-) = 1 - err(-);  er f ( . ) ,  probability integral; H( - ) ,  

Heaviside unit function; J0 ( ' ) ,  dl ("), first-order Bessel functions. 
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